

The Rational Unified Process

Course PAD005 – Software Project Management 5p
Blekinge Institute of Technology, School of Engineering

Autumn 2004

By
Pär Åsfält

Asim Dedic
Samir Drincic

Markus Erlandsson
Master of Science in Computer Science and Engineering

Blekinge Institute of Technology
paas02@student.bth.se
asde02@student.bth.se
sadr01@student.bth.se
maeg02@student.bth.se

For
Patrik Berander

Blekinge Institute of Technology
Patrik.berander@bth.se

Table of content

Abstract... 3
Summary... 3
Workflows in the rational unified process........ 4
Project Management with RUP 4
Project Managers tasks and responsibilities 4
Business Modeling.. 4
Requirements .. 4
Analysis and design .. 4
Implementation ... 5
Prototypes ... 5
Testing .. 5
The configuration & change management........ 6
Inception ... 6
Elaboration.. 7
Construction.. 7
Transition.. 8
How does RUP fit to different types of projects?
.. 8
Commercial (market driven)............................. 8
In-house .. 9
Contract-driven ... 9
Disadvantages ... 10
Planning to death .. 10
Detailing too much ... 10
Skipping problem analysis.............................. 10
Letting end dates of iterations slip.................. 10
Starting construction before fulfilling the exit
criteria of elaboration...................................... 11
Testing only at the end of the project 11
Advantages ... 11
Component based design and implementation 11
Subunit integration.. 11
All testing.. 12
Iterations and its end dates.............................. 12
What about planning? 12
References... 13

Abstract
The Rational Unified Process is one of the best process
models in software development. It as easy as it is
complex. It depends on the size and difficulty of the
project. But if done right it can lead your company to
great success. In the other end, if done poorly can lead
your company to ruins

We shall try and give you a overview in how it works,
so that you may lead your company to success.

Summary
RUP is an iterative process development model with
cycles. That is the reason why it is easily adjusted. It is a
big framework for making the process development
easier. It is mainly done from 4 different phases

• Inception
• Elaboration
• Construction
• Transition
Easy phase can be divided in to more than one

iteration and are edified of several workflows. Examples
of workflows are Requirements, Analysis & Design,
Implementation, Test and Configuration & Change
management. These workflows are acting together and
are their activity grade differs during the different phases
and iterations.

There are six best practices that you are supposed to

follow in RUP and these are.

• Develop software iteratively
• Manage requirements
• Use component-based architectures
• Visually model software
• Continuously verify software quality, and
• Control changes to the software.

The secrets in RUP are many and they can be
summarized to these:
• Risks, RUP is risk driven and that means planning

and follow-up
• Use-cases, they shall be as good written that they can

be used as:
o Formulate requirements and their behaviour.
o Be used as test cases, user manual and

design behaviour.
• Glossary, item definition.
• Iterative development

o Little each time
o Verification and validation
o Frequent deliveries.

This is not new or revolutionary only a structured way
of dealing with changes and their affection. Agree upon
one procedure and one routine and formally structure
your work. You easily discover defects in your work with
your close relation to the end-user and there by also get
more information about what she wants the system to do,
by doing this you get a better system and a more satisfied
customer.

RUP is a big framework with a lot of different
methods to do different tasks. Used for smaller projects
with short release cycles and to big projects that stretch
over several years. RUP also sees the requirements as
changeable objects and that is allowed thru the iterative
process.

RUP uses the component based architecture and it is a
key activity to choose which components of your system
you want to integrate. Using this with the iteration means
that you get a useable release in each iteration. Benefits of
components are flexibility, independency and reuse of
components not code.

In each iteration there is a test phase which verifies the
quality for a perspective of the user stories that was the
ground for the requirements. This means that you test you
product against the requirements and to the real user
behaviour. By doing this you increase the ability to find
errors and when you use this in each iteration you find
them early. The earlier you find errors the easier they are
to fix.

CM has a big responsibility in this development
process because there are going to be much updates and
controlling this and the version handling. This is why
change control is important it must be able to trace the
changes in user stories and there by changes in
requirements and so on.

It is important to also think about which activities are
done in which order, define which components are done
when, define how to measure the progress.

RUP have much similarity with XP (eXtreme
Programming which has taken a lot of ideas from RUP).
These are the also the strengths; see to the end-user needs
(use-cases), importance of testing.

There is some weakness they might be; it takes to
much time, to formal, to ceremonial. That is why it is
important that you don’t choose all things that RUP
support because if you do, you will be buried in
paperwork. The wealth of details is huge.

Workflows in the rational unified process

Project Management with RUP
Rational provides a framework for managing software-
intensive projects. The framework includes guidelines for
managing planning, monitoring and risks, but it doesn’t
guide you how to manage people, budgets or contracts.

Common planning techniques don’t really work with
an iterative process. It’s very hard to plan if you don’t
know what you’re going to do.

The phase plan is the main plan produced at the
beginning of inception; it’s holds dates for milestones
(both minor and major) and which resources will be
needed.

Each iteration plan consists of Gantt charts for
planning and resource allocation. Kruchten (lead architect
of the rational unified process product) says that these
plans shouldn’t be too detailed or strict because they
belong in a dynamic environment, if they are; they
become too hard to maintain and follow. According the
guidelines you should have completed the plan for the
upcoming iteration, and use the active iteration plan for
monitoring the progress.

The duration of each iteration is depending on the size
of the organization, it’s recommended to last for two to
six weeks.

The amounts of iterations vary a lot on the product, i.e.
new technology tends to need more iterations. Companies
that are used to work with and iterative development
process can use more iterations with smaller lead-times,
which according to Kruchten often results in better
products.

Project Managers tasks and responsibilities
The project manager is responsible for following artifacts

• Iteration Assessment
• Iteration Plan
• Business Case

• Software Development Plan
o Product Acceptance Plan, Risk

Management Plan, Risk List, Problem
Resolution Plan, Measurement Plan.

• Work order
• Status Assessment
• Project Measurements

Some daily work for the project manager in a RUP
project could be:

• Planning time for approved change requests for
upcoming iterations

• Monitoring risks
• Status and progress reporting
• Dealing with problems

Business Modeling
Business modeling is made in the inception phase and it’s
about analyzing the customers’ behavior and the target
organization needs.

Requirements
To every requirement we assign risks, effort and costumer
priority. All the information (including prioritization)
should be in the requirements document.

RUP delivers a flow schedule to follow for the
requirements engineering. It helps the engineers to deal
with requirements and new iterations, both on new and
existing systems, analyzing problems, defining system
and scope.

• Analyze the problem: identify stakeholders,
boundaries and constraints.

• Understand Stakeholders Needs: Different
election techniques.

One of the main benefits of an iterative development
model are that requirements often change during the
development and while you show the customer the
prototypes.

Use cases and Scenarios are described as a very good
way of finding the functional requirements.

The professionals involved in the requirements
workflow are: System Analyst, Use-Case Specifier and
User-Interface Designer.

Recommended tools from Rational are: Rational Rose,
Rational RequisitePro and Rational SoDA (for
documentation).

Analysis and design
As in all common development models the purpose of the
analysis and design is to transform the requirements to a
specification describing how to implement the system.

The analysis phase in the Rational Unified Process
ignores many of the non functional requirements; they are
handled in the design phase.

The degree of needed details in the design depends on
the expertise of the implementer, the risks and the
complexity of the system.

Roles that involved in the analysis and design are
mainly the architect and the designer. The architect is
responsible for the analysis model, the design model,
interfaces and the software architecture document. The
designer is responsible for the use-case-realization, the
classes, packages and the subsystems. But there could
also be a database designer and a capsule designer. The
two most important artifacts produced in the analysis and
design phases are: The design model and the software
architecture document.

The design model describes the behavior of the system.
To reduce complexity rational uses an approach with
subsystems and packages.

The analysis model is used for over-viewing the
system. It’s a sketch of the system; you may see it as an
abstraction or generalization of the design.

A key issue in the rational unified process is the
component based development. Here in the design we see
clearly that Rationals framework recommends the
creation of subsystems and designing independent units.
The independent units are connected to each other with
interfaces, this leads to more flexibility, remove
dependencies and increase the possibility of a higher
abstraction level.

Implementation
We just told that the rational unified process follows the
object oriented approach with component based
development, consequently will as well the
implementation go after this approach. The components
are split up in different builds; this requires much
integration and configuration control. The builds are used
for demonstrating the system, with good configuration
control different builds can be used by the developers and
integrators. The integration is as well done is increments.
The reason is that it’s easier to locate errors and the early
results boost the morale of the developers.

Prototypes
During the implementation workflow, prototypes are a
common way of working. There are four common types
of prototypes. First the behavioral prototypes: they
provide a quick preview for how the system will work in
a user perspective. Structural prototypes: The goal of the
structural prototypes is to make a authentically test of the
design with the actual tools that will used later on. The
structural prototypes tend to be transferred to
evolutionary prototypes later on. Exploratory prototypes:

This is quick informal prototypes that are made by the
developers to test the architecture of the system, mainly
for personal needs or proof of concepts. Evolutional
Prototypes: These are maybe the most important
prototypes, the is large, formal, very close related to the
design, rigorously tested, and often developed in more
than one iteration. Often much of the code in the
evolutionary prototypes is moved to the final product.

The key workers in the implementation part are of course
the developers (often called implementers by Rationals
framework), they are also responsible for unit testing of
their contributions. As previous discussed: integrations is
very central in the component based development, so
another important role of the implementation phase are
the integration, he construct all builds.

The structural planning for the implementation should
be done early in the elaboration phase. According to
Rational and Kruchten [1] this will prevent configuration
management problems.

Every subset of the system should have assigned one
responsible person. He’s responsible for integration,
sending change request for the design and control unit
tests.

Testing
The obvious goal with the testing is to find all defects
(and verify the system towards the requirements), but
maybe the most important is to know that we created the
right product (validation). In RUP you have to make sure
that everything is integrated properly and the components
interact well together.

The idea is that everyone is responsible for the quality.
According to Kruchten [2] Quality can’t be seen as a test
at the end of the project, you have to start early with
quality assurance.
 RUP uses an iterative implementation processes,
therefore the test process also have to be iterative.
Rationals framework is based upon many professional
software engineering experts’ experiences, something that
Rational call “Software Engineering Best practices”, and
the experiences are used to find common quality oriented
problems. There are something called quality dimension,
here the product are tested for common quality problems
like; reliability, functionality and performance.
 The Testing follows almost same steps as the
integration. As told in the implementation part, the small
units are tested by the implementer during the
implementation. The next step is the integration test, here
the integration are tested. Third step are the system test,
where the whole system are tested. The forth and last
stage are the acceptance test.

 There are many different types of tests, like
benchmark, configuration, function, installation, integrity
and etc.
 There are three important artifacts: The test plan, the
test model and the results. The plan contains the goals and
the strategies, and the test model describes what kind of
test that should be executed.

The roles in the testing are primary the test designer
(responsible for planning and designing tests) and the
tester (responsible for executing and evaluating).

The configuration & change management
When working with this component based approach you
have to track and maintain your different parts.
Developers have to be able to select different versions
(often newest branch) of a component to fit their needs.
They should also be able to know who is responsible for a
component, look at the history and the reasons for a
change. Another very important part is the ability to work
concurrent with the same modules; often called the
sandbox approach. The sandbox’s vision is that you can
elaborate private with any shared module at your local
computer without affecting others work.

Configuration management is about versions,
dependencies and the concurrent version handling system
(sandbox).

Change management is the structured (sometimes
called bureaucratically) way of approving, handling,
analyzing and implementing of changes. Every worker in
the Rational Unified Process is allowed to fill in a change
request of something that he/she found and think that
should be changed. The change management plan defines
if a change request should contain a reason or solution
besides the requested change area. The change request is
given to the CCB (change control board), consist often of
the configuration manager, the architect and sometimes
even the customer, they are responsible to decide if the
change should be implemented or not. They are also
responsible to analyze with other artifacts that could be
affected by the proposal change, if the change are
approved, they are responsible of follow up the
implementation progress.

Rational provides an illustration of change request
management, configuration management and status and
measurements called the CCM-cube. The goal is to show
how CR, CM and S&M are connected to each other and
how they intertwined and responds with iterations.

Inception
The main purpose of the first phase in this process model
is to decide if it is profitable to carry out the project. This
decision lies on the stakeholders that are involved in the
project. To their help they have several documents. The
projects purpose, goals and the business case are

formulated. The business case contains information to
make a successful delivery, risk management, resource
estimation and an project plan that shows the milestones
that separate the iterations and phases apart.
Approximately half of the use-cases for the project should
be identified. Description of them doesn’t have to be very
elaborate, but enough to give an overview of what needs
to be done. That is why the business case is very
important artefact during this phase.
 An architecture-prototype is developed during this
phase. The prototype isn’t predefined in RUP but can
consist of an executable code or perhaps some models.
The goal of the prototype is to show that it follows the
business case, but also that it is doable.
 So why is this phase so important, well it is in this
phase that the basis for which RUP is chosen for the
project, meaning that the process is adapted to satisfy the
conditions of the organization.
 There are three common groups of tasks that are
executed during this phase. Iteration planning, discussed
earlier, the five workflows and establishing a developing-
environment.
 The five workflows include requirement management,
analysis, design, implementation and test. Gathering
requirements is done in four tasks. The first one is
identifying the requirements that are in the heart of the
system either from technical customers point-of-view. In
the second task the team should put them selves in the
system environment in order to see he system in context.
Also a vocabulary development should commence in this
task. The third task is to find, prioritise and specify the
use-cases. This task is also divided into sub tasks but
generally you can say that goal of it is to have a complete
use-case with different actors and how important they are
to the system. The final task of requirement management
is to gather in all the non-technical requirements.

Analysis is the second activity and is divided in to two
tasks. Analysing the architecture and analysing the use-
cases from a more technical point-of-view, for instance
what kind of resources the use-cases need. The purpose of
design is to start the development of a design-model in
order to make the technical aspects of the system as clear
as possible for the stakeholders. The implementation is
quite small in this phase. But if a prototype is build an
implementation flow should be present with the activities
of the implementation. Testing is almost unheard of, but
the test-leader should be present in gathering of
requirements so that he can get familiar with the system
and its functions.

In the beginning of the project the project manager
decides which goals are to be fulfilled on order to move
to the next phase. He also appoints a group that is going
to evaluate the work, so that it can be decided if the
project should move on to the next phase.

Elaboration
The goal of the second phase is to identify as many
requirements as possible in order to create a baseline for
the architecture. To do that the inception phase is refined,
so that the basis for the system is complete. The models
from the inception phase don’t work as blueprints but
rather as guidelines during the elaboration phase.
Architectural issues such as analysis and design are
determined. Also the team should give a thought to the
technical risks so that they are eliminated early in the
project.

During this phase there are four groups of tasks that
need to be executed, as always the five workflows,
iteration-planning, evaluation and further development of
development-environment.

The workflows in this phase are more elaborate and
should specify the inception-phase’s requirements. After
the inception phase there may be approximately 50 % of
the use-cases, where in this phase that number should be
around 80%, so that prioritising and specifying of the use-
cases is done more accurately. To help the team out the
use-cases should be structured to give better
understanding of the use-case-model, which gets more
complex with every new use-case that is identified.
Another part of requirement management is to create the
user interface prototypes. Where the stakeholders can se
how the system might look in the end.

During the analysis the team should evolve the
primitive analysis that was constructed during the
inception-phase. In the inception-phase the architectural
analysis was rather incomplete, where here the analysis
should lead to almost complete architecture. Also the use-
cases should be analysed, in those cases that are more
complex in technical sense to complete.

In the design phase they may be roughly a tenth of the
whole project that is designed, and later on implemented,
regarding the use-cases. Here the team is going to detail
the use-cases more elaborately.

The implementation is split in three parts. The first one
is of the architecture. There should be identification of the
subsystems which are then tied to the specific parts of the
design-model, making it work properly. The second
implementation is on the classes and subsystems. And in
relation to that unit testing is preformed. The final part of
the implementation is the integration of the system. Even
though this can be a small part of the whole system-
functionality it does help in detailed planning of the
future integration.

The testing is taken more seriously in the elaboration
phase. Purpose is to verify the requirements that have
been identified are the ones that have been designed and
implemented. There are three stages that are a part of
testing, and they are planning tests, designing test and
executing tests. Since they are very self-explanatory there
is no need for more explanation.

After each iteration there should be an evaluation. That
way the system is going to have an executable release
which can be verified against the requirements. The goal
of the evaluation is to eliminate the biggest risks or
having a contingency plan for them.

At the end of the phase the project manager needs to
start planning for the first iteration of the construction
phase and have an idea on how the rest of iterations are
going to proceed. Also the PM should have an
understanding in which order the use-cases are to be
implemented.

Construction
The main purpose of the construction phase is to release a
so called beta release, which can be tested by the user in a
real environment, not in a development environment.
Both the inception- and elaboration phase have eliminated
de biggest risks or created contingency plans for them.
Also a baseline is created, where the basic architecture
with the important technical decisions decided. Also in
this phase new use-cases must be identified. Although the
most of the use-cases are identified there is some still
missing and should be identified and specified during this
phase.

This phase also contains the five workflows, but also
iteration planning, completion of the project’s business
case and evaluation. During the requirement management
the team should identify the rest of the use-cases. The
phase can’t be completed without having identified all
use-cases. That’s why the PM should have set the criteria
for when all use-cases are found. Creation of user
interface prototypes is also done in this phase. Prioritising
and specification of the use-cases found is relatively easy
due to the fact that the most important use-cases should
have been found in the previous two phases.

The analysis should be left alone from now on in case
of the architecture. But it could be used in connecting the
different models, use-case-model and design-model, with
the analysis-model.

In this phase the design and implementation are done
as one work-flow. Until this phase there should have been
approximately 80% of the use-cases identified, but only
10% of them implemented. So now the rest of them are
implemented in the system. There is often problem here
and that is that after each iteration belief in that the task
left are easy and boring to do. So a good PM should have
planed the iterations so that they slowly, logically and
surely lead to a complete product. In order to integrate the
system a detailed plan is needed, and that’s why it uses
the prioritised use-cases as reference to plan the progress.
The goal is to put together the use-cases in order that the
different subsystems, when implemented, create logical,
functional and testable configuration.

The testing is very important during this phase. Every
release is to be and the requirements implemented should
be verified. The unit-tests are done on the spot by the
people that have implemented them. But the integration-,
function-, performance- and system-tests are done by
specific test-employees.

Evaluation is done continuously throughout the
testing, every iteration. But the evaluators should consider
some guidelines also. And they are, if the iteration has
achieved its goals, if every release is approved so that the
next iteration can commence, if risk- and iteration-
documents are updated and if the system-tests approve
that the product is ready for the next phase.

It is very difficult for the team to plan the next phase
due to the fact that the product is on its way to the
customer for final implementation. The one thing that can
be planed is the preliminary schedule for beta testing,
appoint beta-testers and plan the test activities. Even
though it’s impossible to know the outcome of these tests
the team should have a hunch on what the risks are and
try to create a contingency plan for them.

Transition
In this phase the system is thought to be complete in
sense of operating ability. PM and evaluation group have
passed the system for leaving the development and
installing in the customers environment. As previously
mentioned some risks can have stayed hidden during the
testing and are discovered in the customer-environment,
but the customer can also come with new requirements. If
they are not to complex they could be added to the
system, otherwise a feature-list can be created where all
the new requests are added and thus having a new
requirement-document available for a new project.

There are two main goals of this phase and they are,
that the requirements should be filled to customer’s
approval and to take care of any eventual problems that
can arise in order to get the product fully installed.

Different from the other phases transition doesn’t
contain the five workflows in the same extent. Instead the
focus lies on preparation of beta- and acceptance-tests,
installation, managing the test-results, completing all of
the projects artefacts and ending of the project.

The difference between beta- and acceptance-tests is
that during beta testing the project members are rarely
with the testers, while during acceptance tests should
always have members from project present. That is way
the beta tester should be provided with all the manuals
that they could need in order to proceed with the testing.
The acceptance tests are a bit more formal. If the
customer accepts the test-results he then takes over the
control over the product and the teams work is finished.
That is way it’s very important to agree on acceptance
criteria before the testing begins.

Regardless of what kind of testing it is the faults
discovered are divided into two groups, defects and
serious problems. A defect is often related to a component
fault, which luckily should be corrected without iterating
a whole new phase. Luckily, because of the component
based architecture. After dealing with the problem the
team should ask itself following questions.

• Is the bug related, yet undiscovered, bugs?
• Can it be corrected without affecting the

architecture and/or design of the system?
• Has the correction brought up new faults?

 The more serious problems can lead to an new
development iteration. In this case it is very important to
have created change management and configuration
management, because new components can be introduced
and the consequences can be unmanageable.

The termination of a project can proceed when all the
artefacts are completed. This is important so that the
continued development of the product can proceed
without complications. But the most important thing,
obviously, is that the customer is pleased.

Evaluation is divided into two categories, evaluation of
the phase itself and evaluation of the whole project.
Evaluation of this phase is little bit different; first of all
there aren’t any other phases that are after this one and
other projects that start could use the experience from
these projects, so it should be documented. If the previous
phases are done correctly there shouldn’t be any problems
in delivering the product.

The evaluation of the project takes time and should
contain the analysis the mistakes that were done but also
the things that were done well. Purpose is to create some
help to future project so that they don’t make the same
mistakes.

How does RUP fit to different types of
projects?
Here we are going to investigate how big ability to adapt
RUP has.

Commercial (market driven)
Market driven project such as games or programs for
companies or personal use are not that specialized for
RUP. It may seem strange because not really any model
have support for this kind of project. Every company has
to develop the wheel over and over again.

But of course you can change the model to fit into
your project. Fist you have to change the definition of the
requirement and most of all you have to change the way
you get them. Because market driven process is not about
meeting the customers’ needs it is all about guessing the
markets needs. This is why you have to change the way

of looking at requirements. To not be a condition you
have to meet but to look for the needs.

You have to have good knowledge about the area you
will to release you product in. There is unfortunately no
way to know how the market is going to act on your
product. And you have little contact with the end user,
how are you then going to test your product? You simply
can not test it with the real end user but there is something
you can do.

By adding new roles Product Manager and
Requirements Database Management and adding new
work flows you can make it to MRUP (Market-Driven
Rational Unified Process) See [1] for more information.
(Only available in Swedish, short abstract in English)

If you don’t want to do this whole process that change
to the MRUP you can more simpler add a department that
act as customer and have fake end users, such as beta
tester. This is used at some gaming development
companies and they hire or borrow real players and let
them try it out, by doing this they actually get to reach at
least some end-users.

Advantages with using MRUP with commercial
projects are that you still can use the big frameworks of
tolls that RUP offers. Do you use RUP before then you
don’t have to change as much as you would have done
otherwise.

Disadvantages with using MRUP are that it is not
really tested and you might to change some from the
MRUP to make it fit your project.

In-house
In-house projects are when projects are done within the
same company and it is mostly done with support team.
This leads to the same points that are important for the
RUP and that is the close connection with the customer.
In this case it is the same company but that does not really
matter. What a matter is the close connection with the
customer because this will result in; highly iterative
approach with lots of interaction with the users and a
quick feedback loop with prototypes and designs that will
eliminate the fear of not giving them what they want.
Some problems may occur if the company is huge and
there is no god communication with the customer. This
problem might be as great problems as if you have poor
communication with customer maybe even worse.
Because you might not recognize it as a problem in the
beginning, you think hey it is only within our own
company we have good communication here. Else you
might be more foresighted and do something about it in
an earlier stage.

Contract-driven
The RUP was create to do all type of projects according
to Rational them self. But there are several points that you
can’t neglect that indicate that it’s made for the contract
driven projects. That first of all the requirements that you
get from the customer and how you with you relation to
the customer get changed requirements as the time goes
by. RUP is based upon these requirements as simple user
stories that you can use to a lot of things and as you can
change during the whole process. And by its iterative
development process you can deliver the releases to the
customer and there by encourage testing and new changes
in the next iteration.

Furthermore the contract driven project is good for
RUP because you know how will be the end-users and
you can test you product at the customers’ users. But of
course the customer might not have any end-users
because she might use it in commercial purpose then we
are back to the problems mentioned in that part. We can’t
simply only say well that is not our problem, maybe it is
not on this project. But if you give the customer a product
that will revolutionize the market you might have a long
and prosper relationship to look forward to. But if you
give your customer a product that will bankrupt the
customer, fist you won’t get any more contract from that
customer that is obvious. Your reputations might have
been defiled.

But RUP still has the problem with how to get the
contract and how do you pay for contracts that you don’t
get?

Disadvantages
In this part we will describe few serious and large
disadvantages of a Rational Unified Process.

Planning to death
This is the first and perhaps the biggest disadvantage of
Rational Unified Process. Planning to death means just
what it stands for and that is to plan too much and not to
stop when you are supposed to.

This is described as every project manager’s fear in the
book “Adopting the Rational Unified Process”. The
problem appears as a manager has to fulfill the
responsibilities of his role. Among those responsibilities
is to hire the right people and to make sure that project is
costly-effective. To fulfill the second part of the sentence
above a manager has to define some milestones and
delivery dates in order to be able to measure progress and
to make sure that project is not slipping. It works to
define immediate releases and final delivery date and then
to measure the team performance against those.

This works for rather small project where project
manager can have a big clear picture of what is to be done
and by when. In a larger project though this is not
possible. Larger project require more planning to make
sure that resources are used in an optimal way. Also it is
not enough to have some milestones and to measure
progress against those. In a larger project there can be a
whole year between two milestones.

It is here the mistake is done, especially by the
managers using the RUP for the first time. They try to
plan the project to detail for a long time ahead. The book
talks about managers who try to plan the project for a 6
months period. This is not possible! We do not even
know what will be developed at that time.

Many of those managers feel that they are loosing
control over the project if they do not make a detailed
plan but it is not the fact, it is a reality if a iterative
process.

Solution to avoid this trap is to make a high level plan
over the entire project and then as iteration come go more
in detail and plan each iteration. This is called “just in
time planning”. Planning to death problem appears as the
manager even though all recommendations try to make a
detailed plan. This way no development work will ever be
done, people will be busy planning. Another problem that
will appear is that this detailed plan from the beginning of
the project will be out of date just some time into the
project if it is not updated.

All the people ever involved in a software project have
experienced too much planning. Planning is good but as
you do too much you will get the worst possible effect
from it. I a project we did we planned too detailed for a
too long time and the effect was that we spend 30% of out
time later in the project updating the plan. If we had done

just in time planning we would have saved this time and
could have used it for something else.

Detailing too much
This problem is often done by the people that are moving
to the iterative process from a waterfall based way of
thinking. In a waterfall model you should define
requirements pretty much in a lowest detail in order to
move on.

This is not the fact of Rational Unified Process. In
RUP you should write you requirements only so detailed
so you can move on to the next iteration. After moving on
everything will be evaluated and the scope and priorities
of the project will be updated. If you have written to
detailed requirements right at the beginning all this work
will be wasted.

Skipping problem analysis
This problem is something that we have experienced.
The definition of the problem is rather simple. The team
delivers what is not asked. Many times a project team will
go on and define requirements, choose technology and so
on without really looking at the problem that shall be
solved. They simply do not know what they should
deliver. If you do not know what to deliver, it does not
matter how good you make it. Nobody wants the perfect
product if it is not the product ordered.

In order to be sure this does not happens you have to
make a proper problem analysis. This problem is written
as a RUP specific but we believe that it is a problem of
every process model.

As written we have experienced this kind of a project.
We went on and worked towards nothing. Nobody saw
the problem of a end product. Luckily this turned out
good as we in the last moment actually understood what
shall be done.

Letting end dates of iterations slip
This problem is really RUP-specific. Because of the huge
number of iterations RUP is specially exposed to this
problem.

We discussed before that it is not good to plan to
death. What you should do though is to define major
milestones in the overall planning. As this is done you
have a global goal to go for. Project manager should now
define several iterations for each milestone. If one of the
phases/iterations is late you can be pretty sure that the
milestone will be late too. This gives you a overview of
how the project is progressing. In RUP it is recommended
not to ever let an end date of a iteration slip.

To deal with this problem there are several ways. One
of the solutions is to move some of the work to the next
iteration and then make sure that next iteration has more

resources than previously planned so this extra work can
be done in time. This will cause you to meet the end date
of current iteration and enough of time to deal with the
next iteration and the extra work moved to it.

The only thing to be careful about here is the so called
“snowplow” effect. Pushing the work ahead of you whole
the time will make you miss the overall target time. At
this moment you will be forced to add more iterations and
the overall end time will slip.

Starting construction before fulfilling the exit criteria
of elaboration
This problem appears as the most important milestone of
the Rational Unified Process if not followed. This
milestone is called “completion of the elaboration phase”.
To pass this mile stone there are several guidelines or you
can almost see them as requirements, to do. Among those
there is a guideline that says that “the vision and
requirements are stable”. We are not going to write all the
guidelines here but the problem of not fulfilling them.

If the guidelines are not fulfilled there will be
problems. One of the problems will be that you will
probably need time redoing the planning and take care of
changed requirements. This will make the financial risks
of the project to grow. Another thing that will strike you
is that if you have planned for some parallel work it will
not be possible. Without stable architecture it is not
possible to do any parallel work.

So if there is any parallel work planned even more
time should be given to this milestone.

Testing only at the end of the project
One of the clearly defined moments of Rational Unified
Process is that testing should be done at end of each
iteration. Even if this is clearly specified there if often no
testing done until the end of the project. Many
organizations skip this part from the iterations and they
do all the testing in the end.
 This if often done because the testing is found hard to
integrate with the rest of the iterations. The result of
iteration can also be so small that the company feels there
is no point of testing it.
 This should really be seen as a huge problem. Using
RUP often means that it is a rather large project. In this
kind of project you need to test all the time in order to
reveal the problems while there is still time to fix them.

Advantages
Now it is time for some advantages with the Rational
Unified Process.

Component based design and implementation
This is a first good thing with the Rational Unified
Process that is worth describing. The RUP uses UML to
fulfill its goals, and at the same time is it strongly object
oriented. Those two are the foundation of a component
based design and implementation.

Wherever possible the RUP tries to separate
components from each other and make them independent
part of the project. The result will be many small units
that will be designed and implemented without
dependencies on the other parts of the project. This is a
very good thing for several reasons. One of them is that
you now really can apply parallel work. Components are
as we write independent and therefore you can apply
parallel work. You do not have to wait that component X
is finished to go on and work with component Y.

Next thing that makes this handy is the fact that is
something goes wrong it is easy to fix. In a more
traditional process model such as waterfall model you
should change the whole design, update and estimate
once again.

In RUP you only need to update one component. Once
again this component is independent and is not affection
any other components. So the only thing that you have to
do is to update this components design and then
implement it.
Same thing goes for totally changing a whole part of the
project. If this part/component is independent this should
not be a problem. Replace, design and then implement.

Subunit integration
In Rational Unified Process everything that can is divided
into subunits. Every programmer in the project will
receive their own code to manage. The difference
between RUP and other models is that in RUP it is the
programmer (for example) that is responsible to
implement and then make sure that it works. Then they
start on a new iteration, implementing a new component
of the system.

What are the advantages some people might think?
Well first of all it is easier to look into the project and see
the progress. It is easier to locate where we will run late
in out project and can plan regarding that.

The most important thing with this kind of integration
is that failures are easy to locate. If something is not
working this will be detected before the code is smashed
together. So you will have perhaps 1000 rows of code to
search trough rather than 60000. BIG ADVANTAGE!

Another good thing is that workers can go on and
program without having to wait for something other to be
done. If you have made good subunits this will be true at
least. This in order leads to another thing, they can finish
when they have completed the product and tested it. If

they are done with their code they can finish without
having to wait for all the other parts to see the result. To
see the result this fast will most likely raise the morale. It
is always uplifting to see what you have accomplished.

All testing
The Rational Unified Process is rather alone to have this
kind of testing. In all the models there is testing but in
RUP there is this kind of testing three times!

In RUP as you have understood this far we have
several iterations. In each iteration we now also know that
there are several subunits. So what is the result of this?

When a product is to be developed we first make a
large plan how to do it. Then we go on and make the
iterations. Every iteration has its own problems to solve
and parts to develop. In order to manage this we make
several subunits that will be responsible to make those
different parts. So now we have from one huge project
made small projects on almost atomic size level. As those
subunits now work they have to as we wrote before to
make sure that their part is working and that there is no
bugs. This will probably be well done, every programmer
wants to deliver working code.

So now we have done unit-testing. To go on we now
integrate all this subunits into one big chunk, and of
course we have to test it again to make sure it now works
as it is put together. This makes the second testing round.

Now these steps are applied in all iterations. Most
often the result of previous iteration is moving into the
next iteration so it is important to make sure everything is
ok. Other ways next iteration will get huge problems.

After all iterations are done we have to test the entire
product as well! So first we have tens or hundreds of tests
(depending on the number of iterations) and then we test
it all again.

We believe that this make RUP one o the most
“secure” models to use. What is the chance that a bug will
slip trough? It is not big, unless it is some hidden bug that
is hard to find. But is we talk about usual bugs such as
spelling wrong while you are writing the code there will
be none.

Sure this kind of testing takes long time but it is
compensated and rewarded in the end with a fault free
product.

Iterations and its end dates
As we wrote before it is a death sin to let end date of an
iteration slip. And nothing has changed 2 pages down, it
is still a sin.

But if you do not do that sin the Rational Unified
process provides a great advantage to the project.
Control! We find it very handy to be able to see the
progress by just looking at one single iteration. As we
wrote before you only need to look at one iteration and if

it is not slipping in time you do not have anything to
worry about.

In other models you have to make sure too look at the
much bigger picture in order to see if project will be done
in time. Not needed in RUP.

And even if you lose some time and have to take
action to make it back on track again the RUP will make
this easy for you. Push the work that can not be done to
the next iteration. As every finished iteration leads to a
new iteration you can plan for this as next iteration is to
be done. The RUP and its iterative nature make this kind
of action very easy.

What about planning?
This far we have almost only criticized the planning in the
Rational Unified Process, but it is not that bad. Or better
to say it is really good. If you think about for example and
a huge project together you get a headache. To plan a
entire project that is very large you must have some kind
of hyper threading in you head.

What happens in RUP is that you do not have to plan
for a two year period. You can just make a pretty surface
scratching plan for the entire period and take care of
details as you do the iterations. So if you avoid the
“planning to death” problem you will have a good overall
plan and at the same time a good detailed plan as you
need it.

Another thing that will not happen is those constant
updates that we all have experienced. Because we do not
use detailed two year plan we do not have to update it
whole the time to make sure it is accurate, and this saves
time.

References

Philippe Kruchten, The Rational Unified Process An
Introduction Second Edition, Page 189, Addison Wesley,
2000.

Philippe Kruchten, The Rational Unified Process An
Introduction Second Edition, Addison Wesley, 2000.

Adopting the Rational Unified Process, Lotta Råberg and
Stefan Bergström, Addison Wesley 2003

I. Jacobson, G. Booch, J. Rumbaugh, The Unified
Software Development Process, Addison Wesley, 1999.

Lotta Strand, UML & RUP – Att lyckas med oo-projekt,
Docendo, 2001

